Dynamics of a generalized Gause-type predator–prey model with a seasonal functional response
نویسندگان
چکیده
We extend a previous Gause-type predator–prey model to include a general monotonic and bounded seasonally varying functional response. The model exhibits rich dynamical behaviour not encountered when the functional response is not seasonally forced. A theoretical analysis is performed on the model to investigate the global stability of the boundary equilibria and the existence of periodic solutions. It is shown that, under certain well-defined conditions, the Poincar e map of the model undergoes a Hopf bifurcation leading to the appearance of a quasi-periodic solution. Numerical results are given for the Poincar e sections and bifurcation diagrams for Holling-types II and III functional responses, using the amplitude of seasonal variation as bifurcation parameter. The model shows a rich variety of behaviour, including period doubling, quasi-periodicity, chaos, transient chaos, and windows of periodicity. 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
Permanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response
Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.
متن کاملOn Nonlinear Dynamics of Predator-Prey Models with Discrete Delay∗
In this survey, we briefly review some of our recent studies on predator-prey models with discrete delay. We first study the distribution of zeros of a second degree transcendental polynomial. Then we apply the general results on the distribution of zeros of the second degree transcendental polynomial to various predator-prey models with discrete delay, including Kolmogorov-type predator-prey m...
متن کاملDynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملPrey-Predator System; Having Stable Periodic Orbit
The study of differential equations is useful in to analyze the possible past or future with help of present information. In this paper, the behavior of solutions has been analyzed around the equilibrium points for Gause model. Finally, some results are worked out to exist the stable periodic orbit for mentioned predator-prey system.
متن کاملStability analysis of a fractional order prey-predator system with nonmonotonic functional response
In this paper, we introduce fractional order of a planar fractional prey-predator system with a nonmonotonic functional response and anti-predator behaviour such that the adult preys can attack vulnerable predators. We analyze the existence and stability of all possible equilibria. Numerical simulations reveal that anti-predator behaviour not only makes the coexistence of the prey and predator ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004